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Abstract—This paper proposes a recursive receding
horizon path planning algorithm for unmanned vehicles
in nonuniform environments. In the proposed algorithm,
the map is described by grids in which nodes are defined
on corners of grids. The planning algorithm considers the
map as four areas, namely, implementation, observation,
explored, and unknown. The Implementation area is a sub-
set of the Observation area, whereas the Explored area is
the union of all the previous Observation areas. The path
is planned with a receding horizon planning strategy to
generate waypoints and in-between map updates. When
a new map update occurs, the path is replanned within
the current Observation area if necessary. If no such path
exists, the search is extended to the Explored area. Paths
can be planned by recursively searching available nodes
inside the Explored area that can be connected to available
nodes on the boundary of the Explored area. A robot
platform is employed to conduct a series of experiments
in a laboratory environment to verify the proposed path
planning algorithm.

Index Terms—Nonuniform environment, path planning,
receding horizon planning (RHP), recursive searching, un-
manned robot.

I. INTRODUCTION

PATH and mission planning is a fundamental enabling tech-
nique for vehicle autonomy that has been widely used on

vehicles from unmanned ground vehicles (UGVs), unmanned
surface vessels, to unmanned air vehicles, micro air vehicles,
unmanned underwater vehicles, and others [1]–[7]. It plays an
important role in improving vehicle’s availability, sustainabil-
ity, survivability, and safety; reducing operating cost; guaran-
teeing mission success; and enabling tasks in harsh, restricted,
and remote environments. Research in this area has drawn
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extensive interest from military and industrial communities [6],
[8]–[18].

In the past few decades, many planning algorithms have been
developed and utilized on various robots. Algorithms such as
Dijkstra’s algorithm and the A∗ algorithm [19] apply graph
search to find the least cost path from a given starting point to a
goal point. A heuristic function usually consisting of distance
is used to determine the order in which searching algorithm
investigates nodes. The heuristic function includes two parts:
the distance from the starting node to the current location and
the estimated distance from the current location to the goal. The
advantage of these methods is that they are complete, i.e., they
will always find a solution if one exists. There are many variants
of A∗ algorithms [20]–[23]. The limitation is that they require
a full map of area under exploration. This may not hold for
applications that require field exploration itself and, therefore,
cannot be used in unknown environments.

Another branch of searching algorithms is so-called
“dynamic A∗,” or D∗ in short [24]–[27]. It is an incremental
search algorithm, which makes assumption about the unknown
area and finds the shortest path from the robot’s location to its
goal under this assumption. When the robot observes new areas,
it adds the observed area to the map and replans a new path
accordingly. This process is repeated until the robot reaches the
goal. D∗ and its variants have been widely used for autonomous
robots, including the Mars rovers Opportunity and Spirit [28].
Field D∗ is an interpolation-based algorithm [26]. Different
from its predecessors in which nodes are defined as the centers
of grids, field D∗ defines nodes on corners of grids. It uses linear
interpolation to enable waypoints to be located on any position
on edges of grids. This way, it can generate direct, low-cost, and
smooth paths in nonuniform environments [26].

It is worth noting that planning problems are multiobjective
in nature, i.e., the planner’s cost function includes several indi-
vidual objectives. The cost functions for optimality are typically
terrain, mission time, energy consumption, or the combination
of these factors. When these factors are summed up, the overall
cost may not be linear and, in certain scenarios, may make the
robot get stuck when facing complicated environments, as in
[29]. In this reference, a scenario shows that Spirit was unable
to autonomously navigate to a location on the other side of a
cluster of rocks. To avoid such a livelock situation, it requires
that the robot is able to navigate through a big obstacle or move
out from blocked areas [30]–[32]. This requirement motivates
our research into a recursive receding horizon planning (RHP)
method.

In field D∗, the interpolation is carried out in the grids next
to the robot’s current location. Since the robot can observe a
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number of grids, it is desirable to include all grids in the robot’s
observation range in planning. To this end, an RHP scheme is
developed, which is able to use runtime information to plan a
smooth path. In this RHP scheme, a series of waypoints are
planned to connect the robot to the goal. It is important that only
the first waypoint is executed when the robot moves. The map
is updated as more grids are explored, and the path is replanned
if necessary. The benefit is that this planning algorithm is able
to plan a smooth path where waypoints can be located on any
position on the edge of grids without linear interpolation, which
may not work for a cost function that includes nonlinear factors.

In a complex environment, it is still possible that RHP
scheme exhibits undesirable behaviors, such as cycling between
visited waypoints or deadlocking (a situation where the robot
can no longer make progress toward its goal). To address
this, recursive searching is superimposed to RHP to make the
planning algorithm more robust in workspaces.

If a confounding situation arises in the Observation area,
the planner uses a recursive search to extend the planning to
regions of the workspace that have been already explored. The
objective of recursive searching is to find segmented paths in
the Explored area to lead the robot to an available node defined
on the boundary of the Explored area. With this extension,
the algorithm is able to guide the robot in a complicated
environment and avoid livelock or getting stuck.

The remaining parts of this paper are organized as follows.
Section II presents a system overview of the proposed path
planning algorithm. Section III introduces the RHP and how it
is implemented. Recursive searching is discussed in Section IV.
Two experiments on a robot are presented in Section V, which
is followed by concluding remarks in Section VI.

II. ALGORITHM OVERVIEW

Before discussing the path planning algorithm, several as-
sumptions are introduced.

Assumption 1: The robot is operated in a 2-D area, which
is decomposed into a set of square grids.

Assumption 2: Each grid has an associated terrain value
indicating the difficulty to traverse. The area consists of non-
uniform grids.

Assumption 3: Onboard sensors and processing algorithms
are able to calculate the grids’ terrain values in the sensing
scope, i.e., the grids’ terrain values in the robot’s sensing range
are known.

Assumption 4: The robot travels a straight line in grids [24].
As illustrated in Fig. 1, the map is composed of square grids,

and the proposed algorithm considers the map as four areas:
Implementation area I, which contains grids adjacent to the
current location (inner box area), Observation area O, which
consists of grids that can be detected by the robot’s onboard
sensors (top box area), Unknown area U, whose information
remains unknown (area beyond boxes), and Explored area (E),
which is the union of all the previous Observation areas. Note
that the Implementation area I is a subset of the Observation
area O and is a subset of the Explored area E, i.e., I ⊂ O ⊆ E.
The Unknown area is limited to the boundary of the map.

Fig. 2 illustrates the structure of the proposed planning
strategy. At the robot’s location C, sensor data are used to

Fig. 1. Illustration of areas in the map.

Fig. 2. Structure of the proposed mission planning algorithm.

construct an Observation area. For U, an assumption of terrain
is given in advance [26]. With this Observation area, RHP is
implemented to plan a path. If there are available paths AP , the
optimal one will be selected, and the robot will move to the next
waypoint following this optimal path. When the robot moves,
sensor data update the Observation area. If no available path can
be planned in the Observation area, searching is extended to the
Explored area, and recursive RHP is activated. This process is
repeated until the robot reaches the Goal G. If there is no path
in the Explored area, the robot is in an unconnected workspace,
it cannot reach goal, and the planning terminates.

As mentioned earlier, planning is a multiobjective problem
with the cost function being a weighted sum of individual
objectives. In our paper, the cost function is defined as [25]

min
s′∈O

(c(C, s′) + g(s′)) . (1)

In this cost function, c(C, s′) is the cost on path segment
C → s′, whereas g(s′) is the cost of a path segment on s′ → G.
The two path segments are illustrated in Fig. 1 as C → s′ → G.

At the robot’s location C, sensor data are processed to obtain
the terrain values in newly observed grids. Based on the terrain
values, the Observation area O is built, which contains nodes
having high priority to the search path. An RHP strategy is
introduced to search the optimal path in O based on the cost
function (1) defined above. The path is defined by line segments
connecting the robot to goal G via waypoints (as s′ and s′′ in
Fig. 1) on corners or edges of grids. This cost is evaluated for all
available nodes in O, and the node that has the least cost defines
the optimal path. When the optimal path OP is obtained, the
robot moves from current location C to the adjacent waypoint
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Fig. 3. (a) Nodes and interpolation in field D∗. (b) RHP (dots are
nodes, C is the robot current location, P is the node indicating the
optimal path, and X is a waypoint on the edge of a grid).

s′′. At this waypoint with map update, the path is replanned if
necessary.

When no path can be planned in the Observation area O,
the planning is extended to the Explored area E, which is the
union of all the Observation areas at the waypoints that the
robot has observed. The Explored area E in Fig. 1 is illustrated
as the union of the Observation areas in two waypoints. Then,
recursive RHP is proposed to find available paths in E, which
are able to guide the robot from its current location to an
available node on the boundary of E. This process is repeated
until the goal is reached or it turns out that no available path can
be found to reach goal.

III. RHP

One limitation of traditional search algorithms is that they
constrain a robot’s motion to a small set of possible headings,
as dashed lines from C to nodes s1 to s8 shown in Fig. 3(a)
[21], [24]. This often results in unnatural suboptimal paths
with unnecessary turns and awkward directions. Therefore, it
is desirable that the robot can have more flexibility in heading
direction, such as shown in solid line in which waypoint p is
located on the boundary of a grid. Field D∗ achieves this by
using a linear interpolation scheme [25], [26].

Field D∗, however, only considers neighboring grids to the
robot and does not use full knowledge of the observed area.
Since motion is planned over grids, it often requires the size of
the grid to be small to maintain path optimality. In this case,
the robot can observe an area beyond neighboring grids. If this
full information about observation is utilized, the optimality of
planning can be improved.

An RHP strategy borrowed from control area [33]–[35] is
proposed here to overcome these limitations. The basic idea
is that, at any time instant, a path is planned from the robot’s
location C to goal G by searching all available nodes in O. The
path costs for all available nodes in O are calculated, and the
optimal node P is selected, as illustrated in Fig. 3(b). The path
planned in O is C → P . This path generates a waypoint X on
the adjacent grid, and the path is described by C → X → P .

When the robot moves, however, it only executes the path seg-
ment in the neighboring grid. That is, the robot moves to X and
ignores the remaining path segments X → P . When the robot
reaches X , O is updated, and the path is replanned if necessary.

The RHP is carried out iteratively in the following steps.
1) At waypoint pi, a fixed horizon optimization problem

over [pi+1, pi+L] is solved.

Fig. 4. Illustration of RHP. (a) Planning at step 1 from initial position C.
(b) Planning at step 2 from new C [s′′ in (a)].

2) Execute the first waypoint pi+1 generated by step 1.
3) Update the map at waypoint pi+1.
4) Repeat steps 1–3 at waypoint pi+1 over [pi+2 pi+L+1].
The implementation of the RHP is further elaborated in

Fig. 4. In this figure, the inner box is the Implementation area I,
the outer box is the Observation area O1 at step 1, and all other
areas beyond that are the Unknown areas U. Note that the robot
C is located at the corner of four grids; the Implementation area
in this case consists of four grids that share the node C. Each
available node N in O1 indicates a possible path defined by
two straight line segments from C to node N and to goal G.
The costs of all possible paths are calculated from cost function
(1). Then, the optimal path OP with the lowest cost is selected
from all available paths AP . In Fig. 4, the node that defines
the optimal path OP is given by s′. That is, the cost of path
c(C, s′) + g(s′) is the least for all nodes in the Observation area
O1. The optimal path OP is denoted by C → s′ → G.

When the optimal path OP , C → s′ → G, is planned, a
waypoint s′′ is generated on the boundary of the Implemen-
tation area I, which is located on the edge of a grid adjacent
to the robot’s location C. According to RHP, the robot moves
to the waypoint s′′ when the optimal path is implemented. After
the robot reaches s′′ and the map gets updated, the path is
planned again if necessary. A replanning example is shown in
Fig. 4(b).

In Fig. 4(b), the waypoint s′′ in Fig. 4(a) becomes the robot
location C. In addition, the Observation area O2 at step 2 is
larger than O1 at step 1. This is a result of increased map
exploration. Moreover, the Implementation areas (inner boxes)
in these two figures are also different, which indicates that
the Implementation areas change as the robot moves. In this
figure, the robot C is now located on the edge of two grids; the
implementation area is composed of the two grids that share the
edge where C is located on. Then, a new optimal path with s′

in O2 is planned. This path generates a new s′′ on the boundary
of the Implementation areas I, and the robot will move to s′′.

This example also shows that RHP is able to locate waypoints
on the edge of a grid without interpolation, as shown by two
s′′ in Fig. 4(a) and (b). The proposed algorithm can generate
smooth paths with flexible heading directions that reduce un-
necessary turns and fit better the requirements of a robot. This
is an advantage because the factors in the cost function could
be nonlinear, and a linear interpolation may not work well.

Note that, with current map information at step k, the optimal
path from an available node in Ok has lower cost than the
optimal path from an available node in Oi, i = 1, . . . , k − 1.
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Fig. 5. Illustration of areas and planning horizons.

Therefore, the nodes in the current observation area Ok have a
higher priority in searching.

The RHP is able to plan a smooth path. However, it is
possible that the robot enters into livelock or deadlock. If all
paths in O are blocked, the robot is deadlocked in this area.
In this case, no path can be planned directly from C to an
available node N ∈ O and to goal G. To move the robot
forward, recursive searching is introduced in the next section.

IV. RECURSIVE SEARCHING

When the recursive searching is activated, it is superimposed
on RHP, and the planning is extended to the Explored area. This
is illustrated in Fig. 5, in which recursive planning is conducted
in a larger area. The Explored area E is the union of all the
Observation areas at previous steps, i.e., E = ∪Oi, with i =
1, . . . , k (refer to Fig. 1). The map is then composed of E and
U, i.e., MAP = E ∪U. It is clear that Ik ⊂ Ok ⊆ Ek, where
subscript k is the indication of current step, and this relationship
is also illustrated in Fig. 5. Note that the costs on path segments
are also shown in this figure.

The objective is to recursively search available nodes in E

to find out a path that guides the robot from its location to
the goal. To this end, all nodes of E are divided into two
categories, namely, available nodes Na and unavailable nodes
Nu. Available nodes Na are those nodes that can be a waypoint,
whereas unavailable nodes Nu are those that cannot. Available
nodes Na are further divided into those on the boundary of E,
denoted by Na,e, and those inside E, denoted by Na,i, i.e.,
Na = Na,i ∪Na,e.

An available node N ∈ Na,e could indicate available paths,
denoted by AP . That is, if there is an available node on the
boundary of the Explored area E, i.e., Na,e 	= ∅, an available
path can be planned. It is worth noting that whether Na,e is
empty is known because E is the union of the Observation
areas. That is, all the nodes Na,i and Na,e inside and on the
boundary of E have been previously observed.

For an available node Ne ∈ Na,e, a path is planned if a
number of available nodes inside E(Ni ∈ Na,i) can be found
to connect the robot from its current location C to Ne. The
available path therefore is described by C, followed by a num-
ber of available node Ni,j , i, j = 1, . . . , n, an available node
Ne, and goal G, i.e., C → Ni1 → · · · → Nin → Ne → G. The
final path can be a complicated one, containing turns that avoid
collisions and guide the robot in complicated environments.

The robot then moves following this path until map informa-
tion is updated. If, on the other hand, Na,e = ∅ or the robot is
in an unconnected workspace that does not contain goal G, the
search is terminated, and no path is planned.

Fig. 6. Definition of available nodes and unavailable nodes. (a) Avail-
able nodes. (b) Unavailable nodes.

Fig. 7. Definition of connected and unconnected workspaces. (a)
Connected. (b) Unconnected.

A. Available and Unavailable Nodes

As mentioned earlier, when recursive searching is invoked,
all nodes in the Explored areas are divided into two sets:
“available nodes” Na and “unavailable nodes” Nu.

Fig. 6 illustrates the definition of available and unavailable
nodes. In this figure, grids with letter U are in the Unknown
area with unknown terrains; grids with gray shades are different
terrain difficulties; darker shades are more difficult than lighter
ones, and black grids are obstacles. From Fig. 6, a simple rule
to classify nodes can be obtained:

Node is

{
available if no. of obstacles in neighboring grid < 2

unavailable if no. of obstacles in neighboring grid ≥ 2.

B. Region Connectivity

By defining available and unavailable nodes, the algorithm
is able to determine whether the workspace is connected to
the goal or not. Fig. 7(a) shows an example of a connected
workspace. It is clear that, with current knowledge, if unavail-
able nodes cannot form a closed area around the robot, it
remains unobstructed. In this case, there are paths that are able
to guide the robot from current location C to goal G via some
available nodes (square-shaped nodes).

Fig. 7(b) shows an example of an unconnected workspace. In
this case, the robot is located in a zone in which no available
nodes can connect C to goal G. In other words, if G is
unconnected from C, then no path can be planned.

C. Recursive Searching Strategy

Fig. 8(a) shows a scenario in which the robot cannot plan a
path in the Observation area O, formed by [s1, s2, s3, s4]. In
this figure, G is the goal, and the robot location is indicated
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Fig. 8. Illustration of recursive searching. (a) Robot cannot find an
available path in the observed area. (b) Robot finds an available path
in the Explored area via recursive searching.

by waypoint C. The Explored area E is formed by
[s2, s3, s10, s9, s8, s7, s6, s5]. The red dots are unavailable
nodes on the boundary of the Explored area E. The green
dots, s2, s3, s5, and s9, are those available nodes Na,e on the
boundary of E; the cyan dots are the available nodes inside O;
the blue dots and the blue lines are the waypoints visited and
the path segment traveled, respectively.

From Fig. 8(a), it is clear that there is no available path in
O, i.e., AP s′∈O = ∅. Since there are available nodes on the
boundary of E, Na,e = [s2, s3, s5, s9] 	= ∅. That means that the
robot is able to avoid obstacle and moves to at least one of
the nodes in [s2, s3, s5, s9]. To find a path in E, all Ni ∈ Na,i

are recursively investigated to build a path for all Ne ∈ Na,e.
The resulting path can be described as C → Ni ∈ Na,i →
Ne ∈ Na,e → G.

For a selected node Ne ∈ Na,e, such as s9 in Fig. 8(b), all
available nodes Ni ∈ Na,i are sorted according to their cost
to node Ne(s9), and the sorted nodes are denoted by SNa,i,1.
At the beginning, an available path AP is empty, and we put
Ne(s9) as the first node in AP . Then, the first node N1 in
SNa,i,1 is checked to see if it can lead to Ne(s9). If so, N1 is
appended to AP , and N1 is removed from SNa,i,1. In Fig. 8(b),
N1 is found as W2, and AP = [s9,W2]. After N1(W2) is
appended to AP and SNa,i,1 is updated, the set of available
nodes in SNa,i,1 is sorted again according to cost to N1(W2)
and denoted by SNa,i,2. Then, the first node N2 ∈ SNa,i,2

is checked to see if it can be connected to s9 in AP . If so,
the last node in AP is removed, and N2 is appended in AP .
If not, append N2 in AP without removing the last node. In
Fig. 8(b), W1 is checked, and since W1 cannot be connected to
s9 directly, it is appended to AP without removing W2. Now,
AP = [s9,W2,W1]. Again, SNa,i,2 is updated and sorted
again according to cost to W1 to get SNa,i,3.

Suppose that, if the first node to be checked in SNa,i,3 is
node a1, it is found that a1 cannot be connected to the second
last node W2 in AP directly. Therefore, a1 is appended to AP ,
and AP = [s9,W2,W1, a1]. Then, suppose that node a2 at the
left-hand side of a1 is checked. Since a2 can be connected to the
second last node W1 in AP directly, AP is updated with a1 re-
placed by a2, and AP = [s9,W2,W1, a2]. Now, all remaining
available nodes in Na,i can be connected to W1 directly. This
checking and replacing are repeated until the last node becomes

the robot’s location C and AP = [s9,W2,W1, C]. That is, this
path follows C → W1 → W2 → G.

Similarly, other available paths can be planned as
[s9,W2, ax, C] and [s9,W2, ay, C]. In the process of searching
each available path, its associated SNa,i is updated every time
when a new node is checked. This newly checked node is
either appended to AP or used to replace the last node in AP .
This is a recursive search process allowing available paths to
be computed in complicated environments without becoming
trapped by a big obstacle or livelock or deadlock.

In the preceding example, recursive searching is able to find
all available paths, and by comparing the costs of these paths,
the optimal path C → W1 → W2 → s9 is selected to guide the
robot out of the blocked area. When this path is implemented,
the robot drives to the first waypoint p. Once at waypoint p, if
there is a map update, the recursive searching process is carried
out again. Note that the previous planning result can be reused
to reduce computation. In the example shown in Fig. 8(b), since
the map does not have an update at p, the searching results
in the previous step (when the robot is at C) are used at this
step (when the robot is at p). That is, the previously planned
path is followed until the map has an update. In addition, when
map information is updated, only the updated part is replanned.
Fig. 9 shows the pseudocode of the algorithm.

V. EXPERIMENTS

A. Experimental Mobile Robot Platform

The experiments are conducted on a Pioneer 3-AT robotic
UGV platform, as shown in Fig. 10. The platform hosts an
onboard computer that supports a built-in vehicle controller,
serial communications, sonar sensors, encoders, and other au-
tonomous functions. The built-in controller drives the robot at
a commanded speed up to 0.8 m/s and calculates its position.

The onboard computer communicates with the built-in con-
troller through a serial port. The path planning algorithm can
be run either onboard or on a client remote computer that sends
waypoints to the robot via Internet or wireless communication.
After a path is planned, the first waypoint is sent to the robot
and executed. As the robot moves, its onboard sensors measure
vehicle’s position, heading angle, and velocity and send back to
computer for planning.

A safety constraint is added at each waypoint received from
planning. When the robot moves to a waypoint, if this waypoint
is next to obstacle, it moves to a location d = 0.5 m away from
obstacle to avoid collision. The value of d can be adjusted to
accommodate the actual size of the robot and leave more safety
margin distance.

B. Cost Function

As mentioned in Section II, planning is a multiobjective
problem, which is often based on several competing criteria.
Typical criteria include terrain, distance, energy consumption,
and number of turns, among others. When the robot travels at
variable velocities, the mission time can be included as well.

In this paper, the cost function is a weighted sum of path
distance and terrain cost criteria. The distance criterion is meant
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Fig. 9. Pseudocode of recursive RHP.

to allow the robot to seek the shortest path, whereas the terrain
criterion is meant to allow the robot to seek the path that
minimizes wear on its components. The cost is as follows:

min
s′

J = wPath (to(C, s
′) + tu(s

′))

+ wTerrain (do(C, s
′) + du(s

′))

where to(C, s
′) and do(C, s

′) are the terrain estimates and path
distance for path segment C → s′, respectively; whereas tu(s′)
and du(s

′) are the corresponding terrain and distance measures
on path segment s′ → G, respectively; wPath and wTerrain are

Fig. 10. Robot platform.

weighting factors on each cost factor; and wPath + wTerrain =
1. In the following experiments, wPath = wTerrain = 0.5.

C. Experimental Scenarios

Experiments are conducted on a robot platform to verify the
proposed recursive RHP algorithm. When a path is planned, the
first waypoint is sent to the robot and is executed. As the robot
moves, the terrain in the robot’s sensing range becomes avail-
able. With the updated map information, the path is replanned
if necessary.

Scenario 1: The map consists of 19 × 17 grids. Terrain
values are given in five discrete values [0.1, 0.35, 0.55, 0.75, 1],
in which 0.1 is the easiest terrain to traverse, and 1 represents an
obstacle. For scenarios in this work, terrain values for grids are
generated manually to simulate a map of desired complexity.

The robot is assumed to have a sensing range of four grids.
That is, the robot can detect the terrain in the 8 × 8 square
surrounding the robot. For the Unknown areas, the terrain value
is assumed to be a uniform value of 0.5.

Fig. 11 shows a mission scenario that starts from A at
[16.4, 1.2] and ends at G at [1, 16]. This figure is a snapshot
when the robot reaches G and the map has been explored. In the
figure, the square dots are the available nodes in the Observation
area O, the black areas define the obstacles, and the dots on
the edge of obstacles or boundary of area are the unavailable
nodes. The planned path is shown in the traversable area, and
the dots on the path are the waypoints. The mark of available
and unavailable nodes in other areas beyond the Observation
area O has been removed.

The trajectory planned in Fig. 11 is as follows.

1) The robot moves toward goal G by path segment L1

before obstacle s2 − s3 is detected.
2) At waypoint T1, the robot finds that forward progress is

blocked by obstacles s2 − s3. Because of this, it extends
planning to the Explored area E and finds that available
nodes at s4 connect the robot from T1.

3) With this new path, the robot moves backward, following
path segments L2 and L3.



2918 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 5, MAY 2015

Fig. 11. Planning scenario 1.

4) At waypoint s9, s5 becomes an unavailable node, and at
the same time, s6 becomes an available node. Similarly,
s7 and s8 are explored in sequence until T3 is reached.

5) After T3, the robot moves toward the upper left corner
following path segment L4 since it has the lowest cost.

6) At T4, the robot moves left toward goal G, before it
detected that this area is blocked.

7) Following L5, it finds that it is a blocked area at T6. Then,
it moves back to T5 following path segment L6.

8) When it moves out of the blocked area, the robot is able
to plan a path leading it to the goal G.

Note that, at T1, the robot goes back to T2 because it finds
that s2 − s3 is blocked. When the robot visited T4 and T5 for
the first time, it did not know s13 − s10 − s11 − s12 is blocked.
At T6, it found obstacle s13 − s10 − s11 − s12; thus, it went
back to T5 and T4 to move out.

The experiment demonstrates the following.

1) The proposed planning algorithm is able to drive the robot
out of blocked areas, as described by [s1, s2, s3, s4] and
[s10, s11], to avoid livelock or deadlock.

2) The proposed algorithm is able to find an alternative
path from a previously visited set of nodes (avoiding
being blocked by obstacles). For instance, when the robot
visited T4 for the first time, it moved to left following L5.
When the robot moved out of the blocked area via L6

to T4 again, it moved via L7 to s10. It did not go back
to following L4 because nodes on the edge of E in that
direction had been declared as unavailable.

3) The proposed algorithm is able to guide the robot within
a narrow corridor, as shown by path segments L3, L7,
and L8. It shows that our algorithm works in complicated
environments.

4) Waypoints can be located along grid boundaries, leading
to smooth paths.

Scenario 2: Using satellite images of NASA Mars Yard
in Fig. 12(a), a workspace 37 m × 20 m in size is scaled,

Fig. 12. Path planning in Mars Yard. (a) Satellite image of the NASA
Mars Yard. (b) Path planning in scaled Mars Yard map.

as shown in Fig. 12(b). The map has eight different terrain
levels indicated by different colors in which black grids indicate
obstacles, as before.

The robot navigates the simulated Mars Yard terrain from
a starting point [16], [34] (red dot) to the goal [2], [2] (green
dot). The blue lines in the figure are the planned path. The
result shows that, in a real environment, the proposed planning
algorithm can plan the optimal path. The planner plans the path
according to the defined cost function and can find the path with
the least cost based on the available map information. At the
same time, the planner can avoid livelock and deadlock. For
instance, at the starting point, the robot moves into a narrow
dead-end path at s1. After the dead end is detected, the planner
is able to guide the robot moving backward and continue the
planning. It also shows that the robot can move around a big
obstacle, as illustrated in the middle of this figure from s2 to s3.
Note that, at s2, the grids on the upper direction have lower
terrain value and indicate an optimal path on that direction. The
optimal path is therefore on that direction, and the robot moves
upward.

It is worth noting that, if different weighting factors are used
in the cost function, the optimal path could be different from
the path shown in this figure.

Comparing with existing approaches, the proposed planning
algorithm works well in complex environments. The A∗ algo-
rithm requires that a full map is known, which is not suitable for
mission with map exploration. The D∗ algorithm defines nodes
in the center of grids, and therefore, the path segments between
two nodes often involve two different terrain values. Another
limitation of the D∗ algorithm is that it can only generate a
path with eight orientations. Field D∗ defines nodes on the
corner of grids, and this is convenient for cost calculation.
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It is an interpolation-based algorithm that generates smooth
path, in which waypoints can be located on any position on
edges. However, it is not valid for planning with cost function
that includes nonlinear factors. Note that all of these existing
approaches only plan path in the range of the neighboring
grids.

The proposed path planning algorithm has advantages over
the existing methods in the following aspects: Same as the field
D∗ algorithm, it defines nodes on corners of grids. Rather than
using interpolation, the proposed approach plans path in a larger
Observation area, which includes all grids in the sensing range
of the robot’s onboard sensors. This planning, as shown above,
can generate a smooth path in which waypoints can be located
on any points on the edge of grids. Since the proposed approach
does not involve linear interpolation, it is valid for cost function
with nonlinear factors [36]–[40].

The limitation of the proposed approach is that the recur-
sive searching in the Explored area could be time consuming
because it needs to search all available nodes in the Explored
area to connect the robot to all available nodes on the edge of
the Explored area. The benefits are that the proposed algorithm
trades off computation time with capabilities to plan path in
complex environment and avoids deadlock and livelock.

VI. CONCLUSION

In this paper, a path planning algorithm has been developed
to find optimal path in nonuniform environments according to
a defined cost. One advantage of the proposed algorithm is that
it utilizes the full information of the robot’s observation in an
RHP framework. This enables the planner to plan a smooth
path without interpolation operation. The second one is that
recursive searching in the Explored area is able to avoid the
robot getting stuck or livelock or deadlock. Some experimental
results on simulated maps are presented to verify the proposed
algorithm.

For the next step of this research, the planning algorithm
will be optimized and compared quantitatively with other algo-
rithms. The planning performance such as planning time should
be also compared. Field tests will be conducted to test the
algorithm in real-world applications. The robot dynamics, such
as velocity and orientation control, and terrain classification
and identification will be integrated with the planning algorithm
developed in this paper to form a comprehensive robot design
and navigation.
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